Dice Control Throw

  • Appendices
  • Craps Analysis
  • Miscellaneous

Introduction

  • Let’s be clear from the start. “Dice control” or “dice setting” is pure nonsense. Anyone who says or writes otherwise is either too stupid to know better or trying to dupe you into transferring your money from your pocket to their pocket. Think with a clear head. Stop letting your burning desire to make a quick and easy buck cloud your brain to the point that you can’t see it for.
  • Craps dice control is essential for developing an improved throw, and dice setting is an inseparable part of the control players exercise during play. As we have already explained, the control over the dice allows players to master the way they throw and helps them develop a better rolling technique. The various dice sets make it possible to.
  • 'Dice control' or 'dice setting' is an advantage play technique used in craps to set and throw the dice in such a way as to make the dice more likely to land on certain numbers. Skeptics assert that controlling the dice in this way is practically impossible, but notable gambling experts like Michael Shackleford and Stanford Wong seem to give some credence to the notion that this might be possible.

With our online dice! We've got a great range of dice - from standard 6 sides, to dice spinners, and pop-up dice!

One of the most frequently asked questions I get, and certainly the most frequent about craps, is whether dice setting is for real. Publicly until now I said I never saw enough evidence either way and had no position. Privately I was more skeptical. However in May 2004 Stanford Wong, whom I have enormous respect for, attended a 4-day seminar on dice setting and as a result reversed his position and gave what I think could be said is an endorsement. Shortly afterward I saw him at a social function and asked him about it. He obviously did believe that some people can influence the dice but that is was very difficult and something few have mastered.

Wong's comments inspired me to take dice setting more seriously. I had previously been in communication with Frank Scoblete and Larry Edell on the subject, suggesting that I be allowed to observe some top dice setters for myself. Both were agreeable but due to scheduling problems nothing ever came of it. Until recently I also lived within about one mile of dice coach Beau Parker so there was no good reason to keep avoiding the experiment. So after playing phone tag we finally met on July 22 with three other dice setters at the Bellagio.

Before starting Beau explained that dice setters are not able to control every single throw but only influence the dice towards certain numbers. At a 3-4-5x odds table the house edge is only 0.374% so it only takes a slight influence of the dice to overcome that house advantage. However a slight influence could take thousands of rolls to become obvious over the normal randomness of the game. So we both agreed one session was unlikely to prove anything.

As I emphasize on the topic of Internet casino cheating the proper way to make a case for a non-random game is to set up a hypothesis first, then gather data, and then statistically test the data for how well it fits the hypothesis. So I asked Beau what I should be testing for. He said on the come out roll that I should test for winning rolls of 7 and 11, and on all other rolls to test for rolling anything except a 7. Following are the specific results. Each come out roll begins a line.

Parker Experiment Results

DateCasinoShooterRolls
July 22, 2004BellagioBeau7
July 22, 2004BellagioBeau2
July 22, 2004BellagioBeau6,8,6
July 22, 2004BellagioBeau8,7
July 22, 2004BellagioDebbie11
July 22, 2004BellagioDebbie2
July 22, 2004BellagioDebbie6,10,5,9,3,3,12,5,9,5,8,6
July 22, 2004BellagioDebbie11
July 22, 2004BellagioDebbie10,7
July 22, 2004BellagioPablo7
July 22, 2004BellagioPablo7
July 22, 2004BellagioPablo5,7
July 22, 2004BellagioMichael10,7
July 22, 2004BellagioBeau4,7
July 22, 2004BellagioDebbie6,3,4,7
July 22, 2004BellagioPablo9,2,4,6,8,4,2,10,5,8,5,5,11,8,6,2,8,7
July 22, 2004BellagioMichael11
July 22, 2004BellagioMichael7
July 22, 2004BellagioMichael4,6,7
July 22, 2004WestinBeau6,7
July 22, 2004WestinDebbie8,11,6,6,9,4,10,6,6,7
July 22, 2004WestinMichael6,6
July 22, 2004WestinMichael5,4,5
July 22, 2004WestinMichael4,5,12,4
July 22, 2004WestinMichael9,7
July 22, 2004WestinBeau7
July 22, 2004WestinBeau7
July 22, 2004WestinBeau9,6,5,8,9
July 22, 2004WestinBeau6,11,4,3,7
July 22, 2004WestinDebbie7
July 22, 2004WestinDebbie5,6,3,11,6,6,5
July 22, 2004WestinDebbie12
July 22, 2004WestinDebbie11
July 22, 2004WestinDebbie5,9,8,4,8,11,5
July 22, 2004WestinDebbie7
July 22, 2004WestinDebbie6,7
July 22, 2004WestinMichael10,7

The next table summarizes the results. The sample size is too small to perform any robust tests. However just an eyeball test shows the results are thus far close to expectations in a random game. So clearly more testing needs to be done, and is planned for.

Parker Experiment Summary

EventNumber
Come out rolls37
Come out wins (7 or 11)11
Expected come out wins (7 or 11)8.22
Non-come out rolls79
Non-come out win (non-7)65
Expected non-come out win (non-7)65.83
For more information on dice setting or professional lessons please visit Beau Parker'sdicecoach.com.

Stanford Wong Experiment

In August 2004 debate was raging at Stanford Wong's site bj21.com about dice setting. The discussion could be found under the member's only Green Chip section on craps. A professional gambler there challenged Wong to a bet. The terms of the bet were whether precision shooters could roll fewer than 79.5 sevens in 500 rolls of the dice. The expected number in a random game would be 83.33. The probability of rolling 79 or fewer sevens in 500 random rolls is 32.66%.

I was asked to be a monitor for the event, but was out of the country at the time. However I did make an $1800 bet on the over with a well known gambling writer. The dates and locations of the event were kept very quiet, and were not being made available to the public. The shooters were Wong himself and someone known only as 'Little Joe.' According to Wong, the experiment went well and not one roll was called dead nor disputed by the two sides of the bet present at the event. The following table shows the results by shooter.

Wong Experiment Results

ShooterTotal RollsTotal SevensPercent Sevens
Wong2784516.19%
Little Joe2222913.06%
Total5007414.80%

Congratulations to Wong on winning with five sevens to spare. The probability of rolling 74 or fewer sevens in 500 random rolls is 14.41%.

Internal Links

  • How the house edge for each bet is derived, in brief.
  • The house edge of all the major bets on both a per-bet made and per-roll basis
  • Dice Control Experiments. The results of two experiments on skillful dice throwing.
  • Dice Control Advantage. The player advantage, assuming he can influence the dice.
  • Craps variants. Alternative rules and bets such as the Fire Bet, Crapless Craps, and Card Craps.
  • California craps. How craps is played in California using playing cards.
  • Play Craps. Craps game using cards at the Viejas casino in San Diego.
  • Number of Rolls Table. Probability of a shooter lasting 1 to 200 rolls before a seven-out.
  • Ask the Wizard. See craps questions I've answered about:
  • Simple Craps game. My simple Java craps game.

Written by: Michael Shackleford
  • Appendices
  • Craps Analysis
  • Miscellaneous

Disclaimer

One of the most hotly debated topics among advantage gamblers is whether or not it is possible to influence the throw of the dice in craps. Personally, I'm still skeptical. I don't rule out the possibility, but I'm not convinced. Most casinos happily allow it. If I ran a casino, I would allow it too, because I think the number of people who can influence the dice (if any) is far outweighed by the number who think they can, but can't. Still some people I respect do believe in it, mainly Stanford Wong, who trained under Golden Touch Craps. My craps appendix 3 outlines evidence I have gathered. That said, everything else in this page is from the hypothetical perspective that the dice can be influenced. The purpose of this page is to quantify the player advantage, according to his skill level, and recommend the best dice settings.

How Dice Control Allegedly Works

Even the strongest believers in dice control will admit that most throws, even of the best shooters, are still random. However, it takes a small percentage only of precise throws to overcome the house edge. What is happening on these successful throws? There are two schools of thought, or types of shooters. Both types of shooters set the dice in a certain way, hoping to keep them on axis, and together in rotation, as if the dice were glued together. Two things can go wrong after the dice leave the shooter's hands, and that is what divides the two types of shooters.

The first type of shooter is what I'll call the 'correlation shooter.' The correlation shooter does no better than a random shooter at keeping the dice on axis. However, when the dice do stay on axis, the rotations of the two dice are correlated. For a random shooter, if the dice did stay on axis, there would be a 25% chance of their landing with the same faces together, as when the dice were in the shooter's hand. The correlation shooter hopes to increase this probability above 25%, by reducing the probability of the dreaded double-pitch throw. A double-pitch is when both dice stay on axis, but one die rotates 180 degrees more than the other. Likewise, a single-pitch is when both dice stay on axis, but one die rotates 90 degrees more or less than the other. Based on a careful reading of Wong on Dice, for purposes of this page, I assume the correlation shooter shoots randomly, except the probability of zero-pitch throws is a certain percentage higher than expectations, at the cost of an equal reduction in double-pitches. Wong never states this is exactly what happens with correlation shooters; it is my own simplified interpretation. To get specific results from my analysis, I had to put in some specific assumptions.

The second type of shooter is what I'll call the 'axis shooter.' Not only can the axis shooter keep the dice correlated when they do stay on axis, but he can keep them on axis more than the expected 44.44% of the time of a random shooter.

Stanford Wong writes in 'Wong on Dice' that most careful shooters he observed were not keeping both dice on axis more than the random expectations, but were achieving influence through correlation. Based on my faith in Wong, the following tables are all under the assumption of correlation shooting only.

Throw

Dice Settings

There are 84 distinct ways to set the dice. In my analysis for this page, I examined all 84 sets, and noted the best set for each bet. The following sets are the only ones that came up as the best for the bets studied. For practical purposes, the only sets you need to know are Hard Ways set #1 and Sevens set #1. The other sets are either equally as good in some situations, or optimal for bets you shouldn’t be making, because better bets are available.

Dice Settings

Hard Ways Set #1:
This is the king of the dice sets. It is the best, or tied for best, for rolling any point before a 7.
Hard Ways Set #2:
This set is equally as good as the Hard Ways set #1 for rolling points of 4, 5, 9, and 10. It is also the best set on a come out roll for the don't pass bet.
Hard Ways Set #3:
This set is equally as good as the Hard Ways set #1 for rolling points of 5, 6, 8, and 9.
Sevens Set #1:
In my opinion, this set is the best for rolling sevens. It is the best set on the come out roll for pass line bets. It also tied for best for rolling a seven after a don't pass bet on points of 4, 5, 9, and 10.
Sevens Set #2:
This set is the best, or tied for best, for rolling a seven after a don't pass bet on all points.
Sevens Set #3:
This set is the best, or tied for best, for rolling sevens after making a don't pass bet on points of 5, 6, 8, and 9.

Skill Factor

The skill factor is defined as the percentage of double-pitch throws that the skillful shooter turns into zero-pitch throws. A skill factor of zero would apply to a random shooter, where the probability of both a zero-pitch and double-pitch throw are each (2/3) × (2/3) × (1/4) = 1/9 = 11.11%. A skill factor of 12%, for example, would move 12% of double-pitches into zero-pitches. In this case, the probability of a double-pitch would be 11.11% × 88% = 9.78%, and for a zero-pitch would be 11.11% × 112% = 12.44%. All other outcomes would be the same as that of a random shooter.

Rolls to Sevens Ratio

Most of the time the shooter is going to want to avoid sevens. By far, the most common metric for measuring dice control is the 'Sevens:Rolls Ratio,' or RSR. As defined in 'Wong on Dice,' the RSR is the ratio of rolls to sevens. I believe that acronym is a misnomer, because the rolls to sevens ratio should be abbreviated RSR. So, I am going to break with convention and call it that. For a random shooter, the probability of a seven is 1/6, so the RSR would be 6. A skillful shooter should be able to throw fewer sevens, and thus increase the RSR above 6. As a basis of comparison to other sources, I will include the RSR in my house edge tables. The RSR's mentioned in 'Wong on Dice' are usually in the range of 6.3 to 7.0.

Pass Line with 3-4-5X Odds

The following table shows the player advantage on the pass line bet, with 3-4-5X odds, according to skill factor. I measured the house edge two different ways. The column for the house edge with the Hard Way set (HW#1), is the house edge if the shooter always uses the Hard Way set #1, even on a come out roll. The column for the house edge with the Hard Way and Seven sets (HW#1 & 7#1) applies when the shooter uses the Seven set #1 on a come out roll, and the Hard Way set #1 otherwise. The reason for listing the house edge for the Hard Way set alone is that many shooters also make come bets, which would lose on a seven on a come out roll. I've observed some so-called skillful shooters using the Hard Way set on a come out roll, even with no come bets. I believe the reason for this is ease in record keeping.

Pass with 3-4-5X Odds

Dice Throwing Technique Craps

Skill FactorRSRPlayer Adv. — HW#1 SetPlayer Adv. — HW#1 & 7#1 Sets
0.006.000-0.374%-0.374%
0.016.0400.018%0.102%
0.026.0810.414%0.581%
0.036.1220.814%1.062%
0.046.1641.217%1.546%
0.056.2071.623%2.032%
0.066.2502.033%2.521%
0.076.2942.447%3.012%
0.086.3382.864%3.506%
0.096.3833.284%4.003%
0.106.4293.709%4.502%
0.116.4754.137%5.004%
0.126.5224.568%5.509%
0.136.5695.004%6.016%
0.146.6185.443%6.527%
0.156.6675.886%7.04%
0.166.7166.333%7.556%
0.176.7676.784%8.074%
0.186.8187.238%8.596%
0.196.8707.697%9.121%
0.206.9238.160%9.648%
0.216.9778.626%10.179%
0.227.0319.097%10.712%
0.237.0879.572%11.249%
0.247.14310.051%11.788%
0.257.20010.534%12.331%

Don't Pass Line with Laying 3-4-5X Odds

The following table shows the player advantage on the don't pass line bet, with 3-4-5X odds, according to skill factor. As with the pass bet, I measured the house edge two different ways. The first applies if the shooter uses the Seven set #2 on every throw. The second applies if the shooter uses the Hard Way set #2 on the come out roll, and the Seven set #2 on all other throws. Comparing this table to the above table, the player advantage on the pass bet is greater with a skill factor of 0.01 or greater. So, this table is not of much practical value.

Don't Pass, Laying 3-4-5X Odds

Control
Skill FactorRSRPlayer Adv. — 7#2 SetPlayer Adv. — 7#2 & HW#2 Sets
0.006.000-0.274%-0.274%
0.016.0400.021%0.080%
0.026.0810.314%0.433%
0.036.1220.604%0.784%
0.046.1640.892%1.133%
0.056.2071.177%1.480%
0.066.2501.460%1.825%
0.076.2941.741%2.168%
0.086.3382.02%2.509%
0.096.3832.296%2.849%
0.106.4292.570%3.186%
0.116.4752.841%3.522%
0.126.5223.111%3.856%
0.136.5693.378%4.189%
0.146.6183.643%4.519%
0.156.6673.906%4.848%
0.166.7164.166%5.175%
0.176.7674.425%5.501%
0.186.8184.681%5.824%
0.196.8704.935%6.146%
0.206.9235.187%6.467%
0.216.9775.437%6.786%
0.227.0315.685%7.103%
0.237.0875.931%7.418%
0.247.1436.175%7.732%
0.257.2006.417%8.045%

Place and Buy Bets

The next table shows the house edge for placing the 5, 6, 8, and 9, and buying the 4 and 10. When buying the 4 and 10, it is under the rule of paying the commission always. As the table shows, the greatest advantages are on the 6 and 8. If the shooter always used the Hard Way set #1 on the pass line, and had a skill factor of 0.17 or greater, then his advantage would be greater placing the 6 and 8 than the pass line bet with 3-4-5X odds.

Place and Buy Bets

Skill FactorRSRBuy 4,10Place 5,9Place 6,8
0.006.000-2.439%-4.000%-1.515%
0.016.040-2.115%-3.614%-1.048%
0.026.081-1.793%-3.226%-0.579%
0.036.122-1.473%-2.834%-0.107%
0.046.164-1.155%-2.439%0.368%
0.056.207-0.840%-2.041%0.845%
0.066.25-0.526%-1.639%1.325%
0.076.294-0.215%-1.235%1.807%
0.086.3380.095%-0.826%2.292%
0.096.3830.403%-0.415%2.780%
0.106.4290.708%0.000%3.271%
0.116.4751.012%0.418%3.764%
0.126.5221.313%0.84%4.261%
0.136.5691.613%1.266%4.76%
0.146.6181.911%1.695%5.261%
0.156.6672.207%2.128%5.766%
0.166.7162.501%2.564%6.274%
0.176.7672.793%3.004%6.784%
0.186.8183.083%3.448%7.298%
0.196.8703.372%3.896%7.814%
0.206.9233.659%4.348%8.333%
0.216.9773.943%4.803%8.856%
0.227.0314.227%5.263%9.381%
0.237.0874.508%5.727%9.909%
0.247.1434.788%6.195%10.441%
0.257.2005.066%6.667%10.976%

Hop Bets

When I set out on this analysis I thought I would find that the advantage on hop bets was more than on the pass with odds. However, for the most part, it isn't. The only exception would be if your skill factor is at least 12%, and you are throwing at a table in the United Kingdom or Australia, where they pay 16 to 1 on easy hops, and 33 to 1 on hard hops.

Under the UK/Australian rules, my advice on setting for the hop bets is to set anything, and then make hop bets on each of the different combinations showing on the adjacent faces. For example, with Hard Ways set #1, bet on 2-2, 3-3, 4-4, and 5-5. With Sevens Set #1 bet on 1-6 and 2-5.

Hop Bets

Dice Control Throw

Skill FactorRSREasy Hop 15 to 1Easy Hop 16 to 1Hard Hop 30 to 1Hard Hop 31 to 1Hard Hop 32 to 1Hard Hop 33 to 1
0.006.00-11.111%-5.556%-13.889%-11.111%-8.333%-5.556%
0.016.04-10.222%-4.611%-13.028%-10.222%-7.417%-4.611%
0.026.08-9.333%-3.667%-12.167%-9.333%-6.500%-3.667%
0.036.12-8.444%-2.722%-11.306%-8.444%-5.583%-2.722%
0.046.16-7.556%-1.778%-10.444%-7.556%-4.667%-1.778%
0.056.21-6.667%-0.833%-9.583%-6.667%-3.750%-0.833%
0.066.25-5.778%0.111%-8.722%-5.778%-2.833%0.111%
0.076.29-4.889%1.056%-7.861%-4.889%-1.917%1.056%
0.086.34-4.000%2.000%-7.000%-4.000%-1.000%2.000%
0.096.38-3.111%2.944%-6.139%-3.111%-0.083%2.944%
0.106.43-2.222%3.889%-5.278%-2.222%0.833%3.889%
0.116.47-1.333%4.833%-4.417%-1.333%1.75%4.833%
0.126.52-0.444%5.778%-3.556%-0.444%2.667%5.778%
0.136.570.444%6.722%-2.694%0.444%3.583%6.722%
0.146.621.333%7.667%-1.833%1.333%4.500%7.667%
0.156.672.222%8.611%-0.972%2.222%5.417%8.611%
0.166.723.111%9.556%-0.111%3.111%6.333%9.556%
0.176.774.000%10.500%0.750%4.000%7.25%10.500%
0.186.824.889%11.444%1.611%4.889%8.167%11.444%
0.196.875.778%12.389%2.472%5.778%9.083%12.389%
0.206.926.667%13.333%3.333%6.667%10.000%13.333%
0.216.987.556%14.278%4.194%7.556%10.917%14.278%
0.227.038.444%15.222%5.056%8.444%11.833%15.222%
0.237.099.333%16.167%5.917%9.333%12.750%16.167%
0.247.1410.222%17.111%6.778%10.222%13.667%17.111%
0.257.2011.111%18.056%7.639%11.111%14.583%18.056%

Links

Books:
  • Wong on Dice, by Stanford Wong.
  • Golden Touch Dice Control Revolution!, by Frank Scoblete.
  • Get the Edge at Craps, by Sharpshooter.
Personal lessons:
  • Golden Touch Craps

Internal Links

  • How the house edge for each bet is derived, in brief.
  • The house edge of all the major bets on both a per-bet made and per-roll basis
  • Dice Control Experiments. The results of two experiments on skillful dice throwing.
  • Dice Control Advantage. The player advantage, assuming he can influence the dice.
  • Craps variants. Alternative rules and bets such as the Fire Bet, Crapless Craps, and Card Craps.
  • California craps. How craps is played in California using playing cards.
  • Play Craps. Craps game using cards at the Viejas casino in San Diego.
  • Number of Rolls Table. Probability of a shooter lasting 1 to 200 rolls before a seven-out.
  • Ask the Wizard. See craps questions I've answered about:
  • Simple Craps game. My simple Java craps game.

External Links

Learn To Control Your Dice

  • Las Vegas craps survey — The max odds bet allowed at each casino.

All Dice Control Throws Game


Written by: Michael Shackleford
Comments are closed.